ÜBER DIE SYSTEME ABr/VBr_2 (A = Na - Cs, Tl) [1]

H. J. SEIFERT und B. KIEWISCH [2]

Anorganische Chemie der Universität Kassel B. R. Deutschland (Eingegangen am 3. März, 1977)

The systems ABr/VBr_2 (A = Na, K, Tl, Rb, Cs) were investigated by means of differential thermal analysis. The system with NaBr is purely eutectic, in all other systems a compound $AVBr_3$ exists. The compounds crystallize with the $CsNiCl_3$ -structure: columns of face-shared octahedra are held together by the alkali ions. This involves reduced magnetic moments (antiferromagnetism). The lack of compounds with tetrahedral coordination of the V²⁺-ion is explained by the site-preference-energy according to ligand field theory.

Vom zweiwertigen Vanadin sind bisher keine Verbindungen bekannt, in denen das V²⁺-Ion tetraedrische Koordination besitzt. Grund für das alleinige Auftreten der Koordinationszahl sechs dürfte die site-preference-energy sein, die nach der MO-Kristallfeldtheorie [3] für ein d³-System, wie es im V²⁺ vorliegt, mit $1/2 \Delta_{okt}$ (Δ_{okt} = Abstand der t_{2g-} und e_g^* -Spalttherme) am stärksten die Oktaederkonfiguration begünstigt. Darüberhinaus sollten Doppelfluoride und -chloride auch schon nach dem Modell starrer Ionenkugeln aufgrund der Radienverhältnisse r_{V2+}/r_{X-} mit 0.59 (für F⁻) bzw. 0.44 (für Cl⁻) die Oktaederkonfiguration bevorzugen. (Radien in Å nach Shannon u. Prewitt [4]: $r_{V2+} = 0.79$; $r_{F-} = 1.33$; $r_{Cl-} = 1.81$; $r_{Br-} = 1.96$).

Im Falle der Doppelbromide sinkt das Radienverhältnis mit 0.40 knapp unter den kritischen Wert von 0.41 für den Übergang von Oktaeder- zur Tetraederkoordination. Es war daher von Interesse, die Zustandsdiagramme der Systeme Alkalimetallbromid/VBr₂ zu messen, um die Zahl der existierenden Doppelbromide zu erfassen und mit den gängigen Methoden (Röntgenstrukturanalyse, Reflexionsspektren, Messung der magnetischen Suszeptibilitäten) Aussagen über die Koordinationsverhältnisse des V²⁺ in einer Br⁻-Umgebung zu erlangen.

Allgemeine Arbeitsmethoden

Substanzen: Ausgangssubstanzen waren Alkalibromide und TIBr (Fa. Merck, Darmstadt) sowie VBr₂.

Zwar lassen sich nach eigenen Untersuchungen [5] die Hydrate $AVBr_3 \cdot 6H_2O$ (A = Cs, Rb), die aus sauren Lösungen von $VBr_2 \cdot 6H_2O$ isoliert wurden, bei höherer Temperatur entwässern; dabei ist jedoch eine merkliche hydrolytische Zersetzung nicht zu vermeiden.

CsBr und RbBr wurden zur Feintrocknung im Vakuum, TlBr unter Argon geschmolzen. KBr und NaBr wurden ca 150° unterhalb ihres Schmelzpunktes erst im HBr-Strom, dann im Ar-Strom getrocknet.

Darstellung von VBr₂: 70 g VBr₂ ·6H₂O, das durch elektrolytische Reduktion einer Lösung von V₂O₅ in Bromwasserstoffsäure [6] erhalten worden ist, werden feingepulvert in einem Zweihalskolben unter magnetischer Rührung vier Stunden auf 40° (Abbau zu VBr₂ ·4H₂O), dann innerhalb von 3 h auf 110° (grünes VBr₂ · ·2H₂O) und schließlich schnell auf 140° erhitzt. Das entstandene rosafarbene, noch unvollständig entwässerte Roh-VBr₂ wird in einem Quarzrohr in einem HBr/H₂-Strom erst 4 h auf 250°, dann 1 h auf 600° erhitzt und schließlich bei 1400° unter Ar umsublimiert. Ausbeute: 30-35 g VBr₂. – Analyse: 24.2 % V; 75.8 % Br; berechnet: 24.17; 75.83.

Analysenmethoden: V: Permanganometrische Titration mit potentiometrischer Endpunktanzeige [7]. Br: Argentometrische Titration mit potentiometrischer Endpunktanzeige.

Differenzthermoanalyse

Zur Durchführung der DTA-Messungen wurden die Proben, ca 1 g, in Quarzampullen mit eingedelltem Boden eingeschmolzen und zum Homogenisieren aufgeschmolzen (bis 40-Mol% VBr₂ mit einem Gasbrenner, darüberhinaus 24 h bei 1200° im Silitrohrofen). Es wurden Abkühl- und Aufheizkurven gemessen. Die Chromel-Alumel-Thermoelemente waren gegen die üblichen Standards [8] geeicht. Die bis 1200° benutzte Meßzelle ist in Abb. 1 wiedergegeben. Sie besteht aus einem einseitig geschlossenen Keramikrohr, das von einer Bodenplatte aus V2A-Stahl luftdicht abgeschlossen wird. Die eigentliche Meßzelle, ebenfalls aus V2A-Stahl, wird von 2 Porzellanrohren getragen. Die Quarztiegel sitzen direkt auf den Mantelthermoelementen.

Aufheizkurven bis 800° wurden mit einer kürzlich beschriebenen Apparatur [9] gemessen; Messungen oberhalb 1200° wurden an der Universität Marburg mit einer Hochtemperatur-DTA-Einheit der Fa. Netzsch, Selb durchgeführt.

Die Fehlerbreite der Messung wurde zu $\pm 5^{\circ}$ und ± 0.3 -Mol% geschätzt.

Magnetische Messung: Gouy-Methode. Beliebige Meßpunkte im Temperaturbereich -198 bis 100° bei je 10 verschiedenen Feldstärken. Eichung gegen Quecksilberkobaltrhodanid und Tris (äthylendiamin)-nickel(II)-thiosulfat.

Reflexionsspektrometer: Spektrometer MPS-5000 der Fa. Shimadzu. Bereich 4000 bis 500000 cm⁻¹.

Röntgenstrukturanalyse: Pulveraufnahmen: Zählrohrgoniometer PW 1050/25 mit Vakuumzusatz der Fa. Philips. – Hochtemperaturaufnahmen: Simon-Guinier-Kamera, Fa. Enraf-Nonius, Serie 553. – Rechenprogramme: Adaptierte Programme der Arbeitsgruppe R. Hoppe, Gießen.

Abb. 1. DTA-Meßzelle

Zustandsdiagramme

Die Zustandsdiagramme der untersuchten Systeme sind in Abb. 2 zusammengestellt. In den Systemen mit CsBr, RbBr, TlBr und KBr existieren 1 : 1-Verbindungen, die Systeme mit NaBr und BaBr₂ sind rein eutektisch. Diese Ergebnisse wurden durch Röntgenaufnahmen an Kristallpulvern der Verbindungen und je einer Probe mit ~25 bzw. 65-Mol% VBr₂ bestätigt. Die Umwandlungspunkte (U.P.) der Verbindung KVBr₃ wurden durch Hochtemperaturguinieraufnahmen gesichert.

Im System TlBr/VBr₂ traten bei der Messung der Abkühlkurven starke Unterkühlungen auf. Daher konnte der Verlauf der Liquiduskurve auf der TlBr-reichen Seite nur geschätzt werden.

Abb. 2. Zustandsdiagramme der Systeme ABr/VBr₂

Tabelle 1

Charakteristische Daten der Systeme ABr/VBr_2 . (Fp. des $VBr_2 = 1328 \pm 5^\circ$: Zusammensetzung der Eutektika in Mol% VBr_2)

System CsBr/VBr ₂	System RbBr/VBr ₂					
Fp.CsBr 636° 1. Eutek. 625° u. 1.9% Fp. CsVBr 1056°	Fp. RbBr 682° 1. Eutek. 663° u. 6.5% Fp. PbVPr 996°					
2. Eutek, 1025° u. 57.5%	2. Eutek. 995° u. 52.0%					
System TiBr/VBr ₂	System KBr/VBr ₂					
Fp. TlBr 458° Eutek. 447° u. ~ 4% Peritek. 688° u. 21.0%	Fp. KBr 732° Eutek. 665° u. 19.0% Peritek. 901° u. 48.0% U.P. KVBr ₃ 250° u. 405° .					
System NaBr/VBr ₂	System BaBr ₂ /VBr ₂					
Fp. NaBr 740° Eutek. 676° u. 17.0%	Fp. BaBr ₂ 845° Eutek. 778° u. 18.0%					

Röntgenstrukturanalysen

Die Verbindungen AVBr₃ besitzen nadeligen Habitus. Die einzelnen gelbbraunen Nadeln bestehen aus Büscheln verwachsener Mikronadeln. Es ließen sich daher keine Einkristalluntersuchungen durchführen; die Intensitäten der Pulveraufnahmen wiesen starke Texturverfälschungen auf.

Die Röntgenaufnahmen an Kristallpulvern von CsVBr₃, RVBr₃ und TlVBr₃ lassen sich nach den hexagonalen CsNiCl₃-Typ (R. G. 194: $D^4_{6h} - P6_3/mmc)$ indizieren, in dem auch die analogen Doppelchloride kristallisieren.

In Tabelle 2 sind die Gitterparameter mit schon bekannten Literaturwerten zusammengestellt.

Tabelle	2
---------	---

Hexagonale	Gitterkonstanten	der	Verbindungen	AVBr ₃	in	Å	
------------	------------------	-----	--------------	-------------------	----	---	--

	a	с	d _{röntg} .	d _{pykn} .	Literaturwerte		
CsVBr ₃	7.581	6.330	4.46	4.43	7.584; 6.254 7.56; 6.32	[5] [10]	
RbVBr ₃ TIVBr ₃	7.432 7.283	6.297 6.247	4.15 5.73	4.09 5.71	7.425; 6.295	[5]	

Die Debyeogramme der drei Modifikationen des $KVBr_3$ stimmen in den stärksten Reflexen überein, die sich ebenfalls in Anlehnung an den CsNiCl₃-Typ indizieren lassen. Sie unterscheiden sich aber in mehreren schwachen Reflexen, die eine hexagonale Metrik ausschließen. Es dürfte sich dabei um bisher noch unbekannte Verzerrungsvarianten des CsNiCl₃-Typ handeln.

Magnetische Messungen und Reflexionsspektren

Frühere eigene Untersuchungen [5] an den Hydraten $AVBr_3 \cdot 6H_2O$ ($A = NH_4$, K, Rb, Cs) hatten Ergebnisse gebracht, die sich gut als spin-only-Magnetismus bzw. als Ligandenfeldspektren eines d³-Systems im Oktaederfeld beschreiben ließen. Dagegen ergaben magnetische Messungen am CsVCl₃ sowie seinen Mischkristallen mit CsMgCl₃ [11], an CsVBr₃ [5, 10] und RbVBr₃ [5] stark reduzierte, temperaturabhängige Momente; die Spektren ließen sich nicht mehr zufriedenstellend nach dem Tanabe-Sugano-Ansatz für O_h-Symmetrie interpretieren. Grund dafür ist eine antiferromagnetische Spinkopplung in den flächenverknüpften [VCl_{6/2}]_∞ – Oktaedern.

CsVBr. (XDi	$\alpha = -154 \cdot 10$	^{- 6})							
T,K μ_{eff}	77 0.89	123 1.17	184 1.48	223 1.66	257 1.79	273 1.85	303 1.95	324 2.02	356 2.11
RbVBr ₃ (X _D	$a = -145 \cdot 10$	(- ⁶)			I	l	l		[
<i>T</i> ,K	78	129	182	230	257	286	315	340	359
μ_{eff}	0.92	1.21	1.47	1.68	1.78	1.88	1.97	2.06	2.11
TlVBr ₃ (X _{Dia}	$=$ - 193 \cdot 10	- 6)			· · · · · · · · · · · · · · · · · · ·				
T,K	106	148	191	225	259	286	302	333	351
$\mu_{\rm eff}$	1.14	1.38	1.58	1.72	1.85	1.94	1.99	2.09	2.14
$KVBr_{s}(+)$	$\chi_{Dia} = -136 \cdot$	10-8)	I		·	·		<u> </u>	·
T,K	93	159	208	245	273	292	314	337	352
μ_{eff}	1.31	1.63	1.81	1.93	2.01	2.07	2.12	2.18	2.21

Tabelle	3
---------	---

Magnetische Messungen $(\mu_{eff} = (\chi_{Mol,korr.} \cdot T)^{1/2} [B.M.]$

(+) Tieftemperaturmodifikation, bei 200° getempert. – Korrektur für VAN VLECK-Magnetismus (T.I.P.) = $230 \cdot 10^{-6}$

Die Meßwerte χ_{Mol} und μ_{eff} sind in Tabelle 3 zusammengestellt. Der Wert für CsVBr₃ stimmt gut mit dem von Niel [10] überein. Alle Momente liegen tiefer als die von uns früher an Präparaten gemessenen, die durch Entwässerung der

Hydrate hergestellt worden waren. Dies dürfte darauf zurückzuführen sein, daß die Entwässerungsprodukte durch stark gestörte Strukturen – auch erkenntlich an verbreiterten Linien in den Debyeogrammen – die Spinkopplung vermindern, also einen ähnlichen Effekt erzeugen, wie durch Mischkristallbildung mit dem diamagnetischen CsMgCl₃ [11].

Die Messung der Reflexionsspektren ergab keine neuen Erkenntnisse gegenüber der Messung an abgebauten Hydraten [5]. Niel [10] gelang die Zuordnung der Linien eines Tieftemperaturspektrums (4,2K) durch Anwendung eines Feldes der Symmetrie D_{3d} mit einem Kristallfeldparameter 10Dq = 10260 cm⁻¹ (entsprechend für CsVCl₃ : 9050 cm⁻¹).

Diskussion

In den Systemen ABr/VBr_2 treten nur 1 : 1-Verbindungen mit V²⁺ in oktaedrischer Umgebung auf. Analoges ist bisher nur noch von den Systemen des VCl₂ [12] und NiCl₂ [13] bekannt, sieht man davon ab, daß dort zusätzlich noch die Verbindungen K₄VCl₆ und ein nur bei hoher Temperatur stabiles Cs₃NiCl₅ existieren. Sonst findet man stets noch Verbindungen A_2MX_4 , entweder mit isolierten Tetraedern (K₂SO₄ – oder Sr₂GeS₄-Typ) oder in einigen Chloridsystemen mit 4-fach eckenverknüpften Oktaedern (K₂MgF₄-Typ). Mit X = Br, I sind bisher nur Tetraederstrukturen bekannt.

Wie eingangs erwähnt, ist die Bevorzugung von Oktaedern bei gegebenen Liganden in konstantem Abstand (site-preference-energy) nach der Ligandenfeldtheorie [3] mit $1/2 \Delta_{okt}$. für d³-Systeme (V²⁺, Cr³⁺) am größten. Nach Niel [10] ist für CsVBr₃ $\Delta_{okt} = 10Dq = 9050 \text{ cm}^{-1}$ entsprechend 108 kJ ·mol⁻¹, für CsVCl₃ 10260 cm⁻¹ entsprechend 123 kJ ·mol⁻¹.

Aus den Strukturen beider Verbindungen wurden von Herrn Prof. Hoppe, Gießen, Madelunganteile der Gitterenergien berechnet: 3110 kJ \cdot mol⁻¹ für CsVBr₃, 3260 für CsVCl₃. Werte vergleichbarer Größe wurden sowohl rechnerisch als auch experimentell durch Lösungskalorimetrie für die Verbindungen der Systeme ACl/MnCl₂ und ABr/MnBr₂ gefunden [1]. Dabei ergab sich als Differenz der Standardbildungsenthalpien für die beiden Modifikationen des Cs₂MnCl₄ – bei 298 K stabile Modifikationen im K₂MgF₄-Typ, metastabile Hochtemperaturmodifikation im K₂SO₄-Typ – ein Wert von 19.4 kJ. Wegen der vergleichbaren Gitterenergien und Radien ($r_{V^{2+}} = 0.79$ Å; $r_{Mn^{2+}} = 0.83$) dürfte dieser Wert größenordnungsmäßig übertragbar sein. Der Ligandenfeldeffekt für die Oktaederbevorzugung ist mit 1/2 Δ_{okt} . = 54 kJ deutlich größer und damit vollauf ausreichend für die Unterdrückung tetraedrischer Koordination. So sind auch Alkalichlorid/VCl₂-Schmelzen bisher die einzigen dieser Art, in denen spektroskopisch oktaedrische Koordination statt der sonst üblichen (mittleren) Koordinationszahl 4 gefunden worden ist [14]. Wir danken Herrn Prof. Hoppe, Universität Gießen, für die Berechnung von Madelungfaktoren, Herrn Prof. Babel, Universität Marburg, für die Erlaubnis, eine Hochtemperatur-DTA-Apparatur zu benutzen. Die Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie mit Sachmitteln unterstützt.

Literatur

- 1. 21. Mitteilung über Halogenometallate(II). 20. Mitteilung: H.-J. SEIFERT und G. FLOHR, Z. Anorg. Allgem. Chem., 436 (1977) (im Druck)
- 2. B. KIEWISCH, Dissertation (D 26), Gießen, 1977.
- 3. Siehe z. B. D. REINEN, Angew. Chem., 83 (1971) 991.
- 4. R. D. SHANNON und C. T. PREWITT, Acta Cryst., B 25 (1969) 925.
- 5. H.-J. SEIFERT und A. WÜSTENECK, Inorg. Nucl. Chem. Letters, 8 (1972) 949.
- 6. H.-J. SEIFERT und B. GERSTENBERG, Z. Anorg. Allgem. Chem., 315 (1962) 56.
- 8. H. G. MCADIE, Proc. of the 3rd ICTA, Davos 1971, Vol. 1, p. 591.
- 9. H.-J. SEIFERT, Thermochim. Acta, 20 (1977) 31.
- 10. M. NIEL, Thèse, Bordeaux 1976.
- 11. H.-J. SEIFERT, H. FINK und E. JUST, Naturwiss., 55 (1968) 297.
- 12. H -J. SEIFERT und P. EHRLICH, Z. Anorg. Allg. Chem., 302 (1959) 284.
- 13. E. IBERSON, R. GUT und D. M. GRUEN, J. Phys. Chem., 66 (1962) 65.
- 14. D. M. GRUEN und R. L. MCBETH, J. Phys. Chem., 66 (1962) 57.

Résumé – On a étudié par analyse thermique différentielle les systèmes ABr/VBr_2 (A = Na, K, Tl, Rb, Cs). Le système contenant NaBr est purement eutectique; dans tous les autres systèmes, il existe un composé $AVBr_3$. Les composés cristallisent avec la structure CsNiCl₃: les colonnes d'octaèdres ayant des surfaces communes sont maintenues par les ions alcalins. Cela implique des moments magnétiques réduits (antiferromagnétisme). L'absence de composés à coordination tétraédrique de l'ion V²⁺ s'explique par l'énergie de site préférentielle d'après la théorie de champ de ligand.

ZUSAMMENFASSUNG. – Die Systeme ABr/VBr_{2} (A = Na, K, Tl, Rb, Cs) wurden mit der Differenzthermoanalyse untersucht. Das System mit NaBr ist rein eutektisch, in den übrigen Systemen existieren Verbindungen $AVBr_{3}$. Sie kristallisieren im CsNiCl₃-Typ: Säulen flächenverknüpfter Oktaeder werden durch die Alkaliionen zusammengehalten. Dies bedingt durch antiferromagnetische Kopplung reduzierte magnetische Momente. Das Fehlen von Verbindungen mit tetraedrisch koordiniertem V²⁺ wird mit der "site-preference-energy" der Ligandenfeldtheorie erklärt.

Резюме — С помощью дифференциального термического анализа были исследованы системы ABr/VBr_2 , где A = Na, K, Tl, Rb, Cs. Система с NaBr является чисто эвтектической, в то время как в других системах существует соединение $AVBr_3$. Соединения кристаллизуются со структурой CsNiCl₃:: колонки с гране-разделенными октаэдрами, связанные щелочными ионами. Это затрагивает приведенные магнитные моменты (антиферромагнетизм). Отсутствие соединений с тетрагональной координацией иона V²⁺ объясняется, согласно теории поля лигандов, энергией бокового предпочтения.